Nature News

Eshelby Twisted Van der Waals Helical Crystals Discretized


Kim, C.-J. et al. Atomic skinny movie chiral. Nat. Nanotechnol. 11, 520-524 (2016).


Tune, J.C. & Gabor, N. M. Electron quantum metamaterials in van der Waals heterostructures. Nat. Nanotechnol. 13, 986-993 (2018).


Cao, Y. et al. Half-filled correlated insulating conduct in magical-angle graphene supergrids. Nature 556, 80-84 (2018).


Cao, Y. et al. Unconventional superconductivity in magical angle graphene supergrids. Nature 556, 43-50 (2018).


Liu, Ok. et al. Evolution of the coupling between layers within the twisted bilayer of molybdenum disulfide. Nat. Widespread. 5, 4966 (2014).


Naik, M.H. & Jain, M. Ultraflatbands and shear solitons in moire fashions of twisted bilayered transition steel dichalcogenides. Phys. Rev. Lett. 121, 266401 (2018).


Kang, P. et al. Impurities of moiré in twisted bilayer black phosphorus: results on provider mobility. Phys. Rev. B 96, 195406 (2017).


Shtukenberg, A.G., Punin, Y.O., Gujral, A. and Kahr, B. Bending and Twisting Powered by Monocrystal Development. Angew. Chem. Int. Ed. 53, 672-699 (2014).


Jin, S., Bierman, M.J. and Morin, S. A. A brand new turning level within the formation of nanowires: the expansion of nanowires and nanotubes induced by screw dislocation. J. Phys. Chem. Lett. 1, 1472-1480 (2010).


Bierman, M.J., Lau, Y.A., Kvit, A.V., Schmitt, A.L., and Jin, S. Dislocation-induced nanowire development and Eshelby torsion. Science 320, 1060-1063 (2008).


Zhu, J. et al. Formation of chiral branched nanowires by the Eshelby torsion. Nat. Nanotechnol. three, 477-481 (2008).


Oaki, Y. & Imai, H. Amplification of the chirality of molecules in crystal morphology by molecular recognition. Jam. Chem. Soc. 126, 9271-9275 (2004).


Feng, W. et al. Assembling of mid-scale helices with extra interactions and light-enantiomeric materials near the unit for chiral semiconductors. Sci. Adv. three, e1601159 (2017).


Srivastava, S. et al. Gentle-controlled self-assembly of semiconductor nanoparticles in twisted ribbons. Science 327, 1355-1359 (2010).


Eshelby, J. The twist in a crystal mustache containing a dislocation. Philos. Magazine. three, 440-447 (1958).


Eshelby, J. Dislocation of screws in skinny stems. J. Appl. Phys. 24, 176-179 (1953).


Sutter, E. & Sutter, P. 1D son of layered supplies 2D: germanium sulphide nanowires as efficient mild emitters. ACS Appl. Nano Mater. 1, 1042-1049 (2018).


Li, C., Yu, Y., Chi, M. and Cao, L. Nanowire-nanowire epitaxial heterostructures. Nano Lett. 13, 948-953 (2013).


Kong, D. et al. Topological insulating nanowires and nanoribbons. Nano Lett. 10, 329-333 (2010).


Peng, H., Xie, C., Schoen, D.T. and Cui, Y. Nice anisotropy of electrical properties in structured layered In2Se3 nanowires. Nano Lett. eight, 1511-1516 (2008).


Zhang, L. et al. Three-dimensional spirals of MoS2 in atomic layers. Nano Lett. 14, 6418-6423 (2014).


Shearer, M.J. et al. Advanced and non-centrosymmetric stacking of layered steel dichalcogenide supplies created by screw dislocations. Jam. Chem. Soc. 139, 3496-3504 (2017).


Ly, T.H. et al. MoS2 spiral pyramid with vertical conduction. Adv. Mater. 28, 7723-7728 (2016).


Tamura, N. in diffraction deformation and dislocation gradients: spatially resolved native construction and defects (Barabash eds, R. & Ice, G) 125-155 (Imperial Faculty Press, 2014).


Tan, D. et al. Anisotropic optical and digital properties of germanium sulfide in two-dimensional layers. Nano Res. 10, 546-555 (2017).


Akatyeva, E., Kou, L., Nikiforov, I., Frauenheim, T. & Dumitrica, T. Electrically lively screw wrenches in nanowires and nanotubes in ZnO and Si helical. ACS Nano 6, 10042-10049 (2012).


Albrecht, M., Lymperakis, L. & Neugebauer, J. Origin of the unusually robust luminescence of GaN sort A screw dislocations. Phys. Rev. B 90, 241201 (2014).


Al-Ghalith, J., Ni, Y. & Dumitrica, T. Nanowires with dislocations for the thermal conductivity of ultra-low networks. Phys. Chem. Chem. Phys. 18, 9888-9892 (2016).


Ertekin E., Greaney, P., Chrzan, D., and Sands, T. and D. Limits of equilibrium coherence in constrained nanowire heterostructures. J. Appl. Phys. 97, 114325 (2005).


Hirth, J.P. & Lothe, Jen. Dislocation Idea (Krieger, 1992).


Eshelby, J.D., Learn, W.T. & Schockley, W. Anisotropic elasticity with purposes to the idea of dislocation. Acta Metall. 1, 251-259 (1953).


Foreman, A. J. E. Dislocation energies in anisotropic crystals. Acta Metall. three, 322-330 (1955).


de Jong, M. et al. Establish the whole elastic properties of inorganic crystalline compounds. Sci. Knowledge 2, 150009 (2015).

Leave a Reply

Your email address will not be published. Required fields are marked *