Nature News

Electrolytic Vascular Techniques for Excessive Vitality Density Robots

1.

Silverthorn, D. U. Human Physiology: An Built-in Strategy, seventh Version (Pearson, 2015).

2

Kim, T.H., Lee, S.J. and Choi, W.Design and management of the phase-shifted full-bridge converter for the onboard battery charger of electrical forklift vans. J. Energy Electron. 12, 113-119 (2012).

three

Holness, A.E., Perez-Rosado, A., Bruck, H.A., Peckerar, M. and Gupta, S.Ok. in Challenges in time-dependent materials mechanics (eds., Antoun, B. et al.) Vol. 2, 155-162 (Springer, 2017).

four

Liu, P., Sherman, E. & Jacobsen, A. Design and manufacture of multifunctional structural batteries. J. Energy Sources 189, 646-650 (2009).

5

Snyder, J.F., Carter, R.H. & Wetzel, E.D. Electrochemical and mechanical conduct in sturdy strong polymeric electrolytes to be used in multifunctional structural batteries. Chem. Mater. 19, 3793-3801 (2007).

6

Aglietti, G.S., Schwingshackl, C. W. & Roberts, S. C. Multifunctional construction applied sciences for satellite tv for pc functions. Vibration shock. Dig. 39, 381-391 (2007).

7.

Thomas, J.P. & Qidwai, M.A. Design and software of multifunctional structure-materials battery methods. JOM 57, 18-24 (2005).

eight

Soloveichik, G. L. Circulation batteries: present standing and developments. Chem. Rev. 115, 11533-11558 (2015).

9

Weber, A. Z. et al. Redox circulate batteries: a report. J. Appl. Electrochim. 41, 1137-1164 (2011).

ten.

Weng, G.-M., Li, Z., Cong, G., Zhou, Y. & Lu, Y.-C. Launch iodide capability for redox redox circulate batteries with excessive vitality density of zinc / polyiodide and lithium / polyiodide. Vitality Environ. Sci. 10, 735-741 (2017).

11

Li, B. et al. Ambipolar zinc-polyiodide electrolyte for a excessive vitality density redox circulate battery. Nat. Frequent. 6, 6303 (2015).

12

Janoschka, T. et al. Aqueous redox flux polymer battery utilizing non-corrosive, protected and cheap supplies. Nature 527, 78-81 (2015).

13

Duduta, M. et al. Semi-solid rechargeable lithium rechargeable battery. Adv. Vitality Mater. 1, 511-516 (2011).

14

C. Ponce de Leon; A. Frías-Ferrer; J. González-García; D. Szánto; A. A. & Walsh; F. C. Steady circulate cells for vitality conversion. J. Energy Sources 160, 716-732 (2006).

15

Dunn, B., Kamath, H. and Tarascon, J. Storage of electrical vitality for the community: a battery of selection. Science 334, 928-935 (2011).

16

Skyllas-Kazacos, M., Chakrabarti, M.H., Hajimolana, S.A., Mjalli, F.S. and Saleem, M. Progress in analysis and improvement of circulate batteries. J. Electrochem. Soc. 158, R55 to R59 (2011).

17

Doughty, D.H., Butler, P.C., Akhil, A.A., Clark, N.H. & Boyes, J.D. Mounted storage of electrical vitality. Electrochim. Soc. Interface 19, 49-53 (2010).

18

Lönnstedt, O.M., Ferrari, M.C. & Chivers, D.P. Lionfish predators use flared parades to provoke co-operative looking. Biol. Lett. 20140281 (2014).

19

Mohamed, M.R., Sharkh, S.M. & Walsh, F.C. Redox circulate batteries for hybrid electrical automobiles: progress and challenges. In 2009, IEEE Energy Propulsion and Propulsion Conf. 551-557 (IEEE, 2010).

20

Huskinson, B. et al. Natural-inorganic aqueous circulate battery with out steel. Nature 505, 195-198 (2014).

21

Yang, Z. et al. Electrochemical vitality storage for inexperienced grid. Chem. Rev. 111, 3577-3613 (2011).

22

Xia, Y. & Whitesides, G. M. Gentle lithography. Angew. Chem. Int. Ed. 37, 550-575 (1998).

23

Shepherd, R. F. et al. Gentle multi-tasking robotic. Proc. Natl Acad. Sci. USA 108, 20400-20403 (2011).

24

Sfakiotakis, M., Lane, D.M. and Davies, J.B.C. Examination of fish swimming patterns for aquatic locomotion. J. Oceanic Eng. 24, 237-252 (1999).

25

Lauder, G. V. & Tytell, E. D. Hydrodynamics of wave propulsion. Physiol fish. 23, 425-468 (2005).

26

Summers, A.P. & Lengthy, J. H. Pores and skin and bone, tendons and coals: the mechanical conduct of skeletal tissues in fish. Physiol fish. 23, 141-177 (2005).

27

Lengthy, J.H., Hale, M.E., McHenry, M.J. and Westneat, M.W. Capabilities of fish pores and skin: flexural rigidity and secure swimming of the lobe lined with Lepisosteus osseus. J. Exp. Biol. 199, 2139-2151 (1996).

28

Xie, C., H., Zhang, Xu, W., Wang, W. and Li, X. A self-curing long-life zinc-iodine battery with excessive energy density. Angew. Chem. Int. Ed. 57, 11171-11176 (2018).

29

Wehner, M. et al. An built-in design and manufacturing technique for absolutely gentle and autonomous robots. Nature 536, 451-455 (2016).

30

Shepherd, R. F. et al. Use explosions to energy a software program robotic. Angew. Chem. Int. Ed. 52, 2892-2896 (2013).

31.

Katzschmann, R.Ok., DelPreto, J., MacCurdy, R. and Rus, D. Exploration of underwater life with a versatile robotic fish with acoustic management. Sci. Robotic. three, eaar3449 (2018).

32

Christianson, C., N. Goldberg, D. Deheyn, D. Cai, and S. Tolley, T. T. Translucent gentle robots pushed by frameless fluid electrode dielectric elastomeric actuators. Sci. Robotic. three, eaat1893 (2018).

33

Li, T. et al. Versatile digital fish that strikes rapidly. Sci. Adv. three, e1602045 (2017).

34

Katzschmann, R.Ok., Marchese, A.D. & Rus, D. in Experimental Robotics, Vol. 109 (Hsieg eds., M.A. et al.) 405-420 (Springer, 2016).

35

Marchese, A.D., Onal, C.D. & Rus, D. Autonomous robotic fish, able to performing evasion maneuvers utilizing fluidic elastomeric actuators. Gentle robotic. 1, 75-87 (2014).

36

Jusufi, A., Vogt D., Wooden, R.J. and Lauder, G. V. Modulation of swimming and modulation of physique rigidity in a bodily mannequin impressed by fish, robotics and adaptability. Gentle robotic. four, 202 to 210 (2017).

37

Yu, J., Wang, Ok., Tan, M. and Zhang, J. Conception and management of a robotic fish with built-in imaginative and prescient comprising a number of management surfaces. Sci. World J. 2014, 631296 (2014).

38

Donatelli, C.M. et al. Prototype of a swimming silk robotic impressed by fish. In 2018, IEEE Int. Conf. on Gentle Robotics (RoboSoft) 60-65 (IEEE, 2018).

39

Suzumori Ok., Endo S., Kanda T., Kato N. and Suzuki H. A folding rubber pneumatic actuator realizing a soft-swimming robotic. In Proc. 2007 IEEE Int. Conf. Robotics and Automation 4975-4980 (IEEE, 2007).

40

Valdivia and Alvarado, P. and Youcef-Toumi, Ok. in Robotic Fish: Underwater robots resembling bio-inspired fish (ed., Du, R. et al.) 161-191 (Springer, 2015).

41

Winsberg, J. et al. Hybrid poly (TEMPO) / zinc battery: a brand new excessive voltage and protected "inexperienced" vitality storage system. Adv. Mater. 28, 2238-2243 (2016).

42

Perry, M.L., Darling, R.M. and Zaffou, R. Excessive energy density redox battery cells. ECS Trans. 53, 7-16 (2013).

43

Davies, T. & Tummino, J. Excessive efficiency vanadium redox circulate batteries with graphite felt electrodes. J. Carbon Res. four, eight (2018).

44

Aaron, D.S. et al. Spectacular efficiency positive factors from vanadium redox circulate batteries by means of a modified cell structure. J. Energy Sources 206, 450-453 (2012).

45

Liu, Q.H. et al. Excessive efficiency vanadium redox circulate batteries with optimized electrode configuration and membrane choice. J. Electrochem. Soc. 159, A1246 to A1252 (2012).

Leave a Reply

Your email address will not be published. Required fields are marked *