Nature News

Pluripotency and the origin of animal multicellularity

1.

Cavalier-Smith, T. Origin of animal multicellularity: precursors, causes, penalties – the choanoflagellate / sponge transition, neurogenesis and the Cambrian explosion. Phil Trans. R. Soc. Lond. B 372, 20150476 (2017).

2

Brunet, T. & King, N. The origin of animal multicellularity and cell differentiation. Dev. Cell 43, 124-140 (2017).

three

Arendt, D., Benito-Gutierrez E., T. Brunet, T. & Marlow, H. The gastric pouch and the mucociliary sole: making ready the bottom for the evolution of the nervous system. Phil Trans. R. Soc. Lond. B 370, 20150286 (2015).

four

Nielsen, C. Six main steps in animal evolution: Are we larvae of sponges? Evol. Dev. 10, 241-257 (2008).

5

Sebé-Pedrós, A., Degnan, B.M. and Ruiz-Trillo, I. The Origin of Metazoa: A Unicellular Perspective. Nat. Rev. Broom. 18, 498-512 (2017).

6

Sebé-Pedrós, A. et al. The dynamic regulator genome of Capsaspora and the origin of animal multicellularity. Cell 165, 1224-1237 (2016).

7.

Gaiti, F. et al. The panorama of histone adjustments in a sponge reveals the origin of the cis-regulatory complexity of the animal. eLife 6, e22194 (2017).

eight

Gaiti, F., Calcino, A., Tanurdžić, M. and Degnan, B., M. Origin and evolution of the non-coding metazoan regulatory genome. Dev. Biol. 427, 193-202 (2017).

9

Babonis, L. S. & Martindale, M. Q. Phylogenetic proof for the modular evolution of metazoan signaling pathways. Phil Trans. R. Soc. Lond. B 372, 20150477 (2017).

ten.

Fairclough, S.R. et al. Evolution of the genome of Premetazoan and regulation of cell differentiation in choanoflagellate Salpingoeca rosetta. Genome Biol. 14, R15 (2013).

11

Sebé-Pedrós, A. et al. Regulated aggregative multicellularity in a unicellular mother or father near metazoans. eLife 2, e01287 (2013).

12

of Mendoza, A., Suga, H., Permanyer, J., Irimia, M. and Ruiz-Trillo, I. Complicated transcriptional regulation and unbiased evolution of fungal-like traits in a mother or father of animals. eLife four, e08904 (2015).

13

Arendt, D. et al. The origin and evolution of cell varieties. Nat. Rev. Broom. 17: 744-757 (2016).

14

Maldonado, M. Choanoflagellates, choanocytes and animal multicellularity. Invertebrate Biol. 123, pp. 1-22 (2004).

15

Ereskovsky, A. Comparative embryology of sponges (Springer, 2010).

16

Nakanishi, N., Sogabe, S. and Degnan, B. M. Evolutionary origin of gastrulation: info from the event of sponges. BMC Biol. 12, 26 (2014).

17

Hashimshony, T. et al. CEL-Seq2: Extremely multiplexed, single-celled, delicate RNA-Seq. Genome Biol. 17, 77 (2016).

18

Fernandez-Valverde, S.L., Calcino, A.D. and Degnan, B.MD. In-depth sequencing of the developmental transcriptome uncovers many new genes and enhances gene annotation within the sponge Amphimedon queenslandica. BMC Genomics 16, 387 (2015).

19

Le Cao, Ok.A., Boitard, S. & Besse, P. Sparse PLS discriminant evaluation: choice of biologically related traits and graphic shows for multiclass issues. BMC Bioinformatics 12, 253 (2011).

20

Love, M. I., Huber, W. and Anders, S. Average estimate of fold change and dispersion for seq-RNA information with DESeq2. Genome Biol. 15, 550 (2014).

21

Domazet-Lošo, T. & Tautz, D. An age index of the transcriptome based mostly on phylogeny displays patterns of ontogenetic divergence. Nature 468, 815-818 (2010).

22

Li, L., Stoeckert, C.J., Jr & Roos, D.S. OrthoMCL: Identification of orthologous teams for eukaryotic genomes. Genome Res. 13, 2178-2189 (2003).

23

Fagnocchi, L. & Zippo, A. A number of roles of MYC within the integration of pluripotent stem cell regulatory networks. Entrance. Cell Dev. Biol. 5, 7 (2017).

24

Younger, S. L. et al. Premetazo ancestry of the Myc – Max community. Mol. Biol. Evol. 28, 2961-2971 (2011).

25

Kress, T.R., Sabò, A. and Amati, B. MYC: Linking Selective Transcription Management to International RNA Manufacturing. Nat. Rev. Most cancers 15, 593-607 (2015).

26

Sogabe, S., Nakanishi, N. and Degnan, B. M. The ontogeny of choanocyte chambers throughout metamorphosis within the Amphimedon queenslandica demosponge. Evodevo 7, 6 (2016).

27

Mah, J.L., Christensen-Dalsgaard, Ok.Ok. & Leys, S.P. Choanoflagellate and col-flagellar techniques of choanocytes and the speculation of homology. Evol. Dev. 16, 25-37 (2014).

28

Pozdnyakov, I., Sokolova, A., Ereskovsky, A. and Karpov, S. The construction of cineptin of choanoflagellates and sponge choanocytes doesn’t help their shut relationship. Protistology 11, 248-264 (2017).

29

Srivastava, M. et al. The genome of Amphimedon queenslandica and the evolution of animal complexity. Nature 466, 720-726 (2010).

30

Levin, M. et al. The mid-developmental transition and the evolution of animal physique plans. Nature 531, 637-641 (2016).

31.

Anders, S. & Huber, W. Evaluation of Differential Expression for Sequence Depend Information. Genome Biol. 11, R106 (2010).

32

Wickham, H. ggplot2: Trendy Graphics for Information Evaluation (Springer, 2009).

33

Kolde, R. pheatmap v.1.zero.eight https://cran.r-project.org/bundle=pheatmap (2012).

34

Neuwirth, E. RColorBrewer v.1.1-2 https://cran.r-project.org/bundle=RColorBrewer (2011).

35

Conesa, A. et al. Blast2GO: a common instrument for annotation, visualization and evaluation in purposeful genomics analysis. Bioinformatics 21, 3674-3676 (2005).

36

Götz, S. et al. Purposeful annotation and high-speed information mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420-3435 (2008).

37

Kanehisa, M., Sato, Y. and Morishima, Ok. BlastKOALA and GhostKOALA: KEGG instruments for the purposeful characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726-731 (2016).

38

Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. and Tanabe, M. KEGG as a useful resource of reference for the annotation of genes and proteins. Nucleic Acids Res. 44 (D1), D457 – D462 (2016).

39

Rohart, F., Gautier, B., Singh, A. and Le Cao, Ok.-A. mixOmics: An R bundle for choosing omic options and integrating a number of information. PLoS Comput. Biol. 13, e1005752 (2017).

40

Aguilera, F., McDougall, C. and Degnan, B. M. The co-option and the evolution of de novo genes are on the base of the range of mollusc shells. Mol. Biol. Evol. 34, 779-792 (2017).

41

Domazet-Lošo, T., Brajković, J & Tautz, D. An strategy to phylostratigraphy to find the genomic historical past of the principle diversifications in metazoan lineages. Genet Tendencies. 23, 533-539 (2007).

42

Shen, L. GeneOverlap: an R bundle to check and visualize gene overlays http://shenlab-sinai.github.io/shenlab-sinai/ (2014).

43

Wattam, A. R. et al. PATRIC, bioinformatics database on micro organism and evaluation useful resource. Nucleic Acids Res. 42, D581 to D591 (2014).

44

Yates, A. et al. Ensembl 2016. Nucleic Acids Res. 44 (D1), D710 to D716 (2016).

45

Genome Initiative of Arabidopsis. Evaluation of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815 (2000).

46

Ruiz-Trillo, I., Lane, C.E., Archibald, J.M. and Roger, A. J. Overview of the origin of the evolution and genomic structure of the unicellular opisthokonts Capsaspora owczarzaki and Sphaeroforma arctica. J. Eukaryot. Microbiol. 53, 379-384 (2006).

47

Suga, H. et al. The genome of Capsaspora reveals a fancy unicellular prehistory of animals. Nat. Widespread. four, 2325 (2013).

48.

King, N. et al. The genome of choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451, 783-788 (2008).

49

Wilson, D., Charoensawan, V., Kummerfeld, S.Ok. and Teichmann, S. A. DBD – Taxonomically Massive Transcription Issue Predictions: New Content material and Performance. Nucleic Acids Res. 36, D88 – D92 (2008).

50

Srivastava, M. et al. Early evolution of the homeoboxic gene household LIM BMC Biol. eight, four (2010).

51.

Larroux, C. et al. Genesis and growth of metazo transcription issue gene lessons. Mol. Biol. Evol. 25, 980-996 (2008).

52

Larroux, C. et al. Developmental expression of transcription issue genes in a demosponge: info on the origin of metazoan multicellularity. Evol. Dev. eight, 150-173 (2006).

53

Shimeld, S.M., Degnan, B. and Luke, G. N. Evolutionary genomics of Fox genes: origin of gene households and ancestry of gene clusters. Genomics 95, 256-260 (2010).

54

Layden, M.J., Meyer, N.P., Pang, Ok., Seaver, E.C. and Martindale, M. Q. Expression and phylogenetic evaluation of the zic gene household within the evolution and growth of metazoans. Evodevo 1, 12 (2010).

55

Presnell, J.S., Schnitzler, C.E. & Browne, W.E. Evolution of the KLF / SP household of transcription elements: Growth, diversification and innovation in eukaryotes. Genome Biol. Evol. 7, 2289-2309 (2015).

56.

Mukhopadhyay, S. & Jackson, P. Ok. Proteins of the Tubby household. Genome Biol. 12, 225 (2011).

57

Larroux, C. et al. The homeobox gene cluster NK is anterior to the origin of the Hox genes. Curr. Biol. 17, 706-710 (2007).

58

Wang, L., Tang, Y., Cole, AP and Marmorstein, R. Construction and chemistry of histone acetyltransferases p300 / CBP and Rtt109: implications for the evolution and performance of histone acetyltransferase. Curr. Opin. Struct. Biol. 18, 741-747 (2008).

59

Petroni, Ok. et al. The promiscuous lifetime of the NUCLEAR FACTOR F issue transcription elements of the plant. Plant Cell 24, 4777-4792 (2012).

60.

Morrison, A.J. & Shen, X. Chromatin reworking past transcription: the INO80 and SWR1 complexes. Nat. Rev. Mol. Cell Biol. 10, 373-384 (2009).

61.

Jones, M.H., Hamana, N., Nezu, Ji. & Shimane, M. A brand new household of bromodomain genes. Genomics 63, 40-45 (2000).

62

Track, W., Solimeo, H., Rupert, R., Yadav, N., S., and Zhu, Q. Purposeful Dissection of a Rice Dr1 / DrAp1 Transcriptional Repression Complicated. Plant Cell 14, 181-195 (2002).

63.

Matheos, D.P., Kingsbury, T.J., Ahsan, U.S. & Cunningham, Ok.W.Tcnlp / Crzlp, a calcineurin-dependent transcription issue that differentially regulates gene expression in Saccharomyces cerevisiae. Genes Dev. 11, 3445-3458 (1997).

64.

Rivera, A.S. et al. The duplication of genes and the origins of the morphological complexity of pancrustacean eyes, a genomic strategy. BMC Evol. Biol. 10, 123 (2010).

65.

Romanovskaya, E.V. et al. NF1 household transcription elements: Attainable mechanisms of expression of inducible genes within the evolutionary lineage of multicellular animals. I’m flying. Biochem. Physiol. 53, 85-92 (2017).

66.

Leys, S. P. et al. Isolation of the event materials of Amphimedon. Chilly Harb Spring. Protoc. 2008, prot5095 (2008).

67.

Degnan, B.M. et al. Biology of the evolutionary growth of invertebrates, vol. 1 (Springer, 2015).

68.

Larroux, C. et al. Full in situ hybridization at Amphimedon. Chilly Harb Spring. Protoc. 2008, prot5096 (2008).