Nature News

Perovskites freed from crystalline oxides as much as the monolayer restrict

1.

Novoselov, Ok.S. et al. Electrical area impact in atomically skinny carbon movies Science 306, 666-669 (2004).

2

Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. and Kis, A. Monolayer MoS2 Transistors. Nat. Nanotechnol. 6, 147-150 (2011).

three

Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. and Kis, A. Ultrasonic photodetectors primarily based on MoS2 monolayer. Nat. Nanotechnol. eight, 497-501 (2013).

four

Mak, Ok.F., He, Ok., Shan, J. and Heinz, T. F. Controlling the polarization of the valley within the MoS2 monolayer by optical helicity. Nat. Nanotechnol. 7, 494-498 (2012).

5

Bednorz, J.G. & Müller, Ok. A. Excessive attainable
c superconductivity within the Ba – La – Cu – O system. Z. Phys. B 64, 189-193 (1986).

6

Dagotto, E. Electrons correlated in excessive temperature superconductors. Rev. Mod. Phys. 66, 763-840 (1994).

7.

Jin, S. et al. A thousand change in resistivity within the magnetoresistive La – Ca – Mn – O movies. Science 264, 413-415 (1994).

eight

Tokura, Y. & Tomioka, Y. Colossal Magnetoresistive Manganites. J. Magn. Magn. Mater. 200, 1-23 (1999).

9

Imada, M., Fujimori, A. and Tokura, Y. Metallic-insulator transitions. Rev. Mod. Phys. 70, 1039-1263 (1998).

ten.

Ahn, Ok.H., Lookman, T. and Bishop, A. R. Coexistence of a stress-induced metal-insulator section in perovskite manganites. Nature 428, 401-404 (2004).

11

Ramesh, R. & Spaldin, N. A. Multiferroics: Progress and Prospects for Skinny Layers. Nat. Mater. 6, 21-29 (2007).

12

Cheong, S.-W. & Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13-20 (2007).

13

Lu, D. et al. Synthesis of unbiased monocrystalline perovskite movies and heterostructures by etching of water-soluble sacrificial layers. Nat. Mater. 15, 1255-1260 (2016).

14

Hong S. S. et al. Two – dimensional restrict of crystalline order in perovskite membrane movies. Sci. Adv. three, eaao5173 (2017).

15

Bakaul, S.R. et al. Monocrystalline useful oxides on silicon. Nat. Frequent. 7, 10547 (2016).

16

Paskiewicz, D.M., R. Sichel-Tissot, Karapetrova E., L., Stan and Fong, D.D. Monocrystalline SrRuO3 nanomembranes: a platform for delicate oxide electronics. Nano Lett. 16, 534-542 (2016).

17

Matthews, J. W. Progress of face-centered cubic metals on sodium chloride substrates. J. Vac. Sci. Technol. three, 133-145 (1966).

18

Wong, W.S., Sands, T. and Cheung, N. W. No innocent separation of GaN skinny movies on sapphire substrates. Appl. Phys. Lett. 72, 599-601 (1998).

19

Bruel, M. Software of hydrogen ion beams to silicon on insulator expertise. Nucl. Instrum. Phys. Strategies Res. B 108, 313-319 (1996).

20

Meyer, J.C. et al. The construction of graphene sheets in suspension. Nature 446, 60 (2007).

21

Jang, H.W. et al. Stress-induced polarization rotation in epitaxial skinny movies (001) BiFeO3. Phys. Rev. Lett. 101, 107602 (2008).

22

Bea, H. et al. Proof of multiferroicity at room temperature in a compound with an unlimited axial ratio. Phys. Rev. Lett. 102, 217603 (2009).

23

Yang, J.C. et al. Orthorhombic BiFeO3. Phys. Rev. Lett. 109, 247606 (2012).

24

Xu, G. et al. Low symmetry section in epitaxial skinny movies BiFeO3 (001). Appl. Phys. Lett. 86, 182905 (2005).

25

Xu, G., Li, J. and Viehland, D. Monoclinic within the floor state (M
b) regularly introduce epitaxial skinny movies into (110) c BiFeO3. Appl. Phys. Lett. 89, 222901 (2006).

26

Yan, L., H. Cao, Li, J. F. & Viehland, D. Triclinic section in angled BiFeO3 epitaxial skinny movies (001). Appl. Phys. Lett. 94, 132901 (2009).

27

Ricinschi, D., Yun, Ok. Y. and Okuyama, M. Examine of the primary rules of big polarization BiFeO3 movies and its dependence on structural parameters. Ferroelectrics 335, 181-190 (2006).

28

Zhang, J. X. et al. Microscopic origin of the large ferroelectric polarization in BiFeO3 of the tetragonal sort. Phys. Rev. Lett. 107, 147602 (2011).

29

Ederer, C. and Spaldin, N. Impact of epitaxial stress on the spontaneous polarization of ferroelectric skinny movies. Phys. Rev. Lett. 95, 257601 (2005).

30

Lebeugle, D., Colson, D., Neglect, A. and Viret, M. Very massive spontaneous electrical polarization in single crystals of BiFeO3 at room temperature and its evolution beneath fields of cycles. Appl. Phys. Lett. 91, 022907 (2007).

31.

Wang, H. et al. Direct remark of out-of-plane ferroelectricity at room temperature and tunnel-resistance on the two-dimensional restrict. Nat. Frequent. 9, 3319 (2018).

32

Cao, Y. et al. Unconventional superconductivity in magical angle graphene supergrids. Nature 556, 43-50 (2018).

33

Cao, Y. et al. Half-filled correlated insulating habits in magical-angle graphene supergrids. Nature 556, 80-84 (2018).

34

Neaton, J., Ederer, C., Waghmare, U., Spaldin, N. and Rabe, Ok. Examine of the primary rules of spontaneous polarization in BiFeO3 multiferroic. Phys. Rev. B 71, 014113 (2005).

35

Nelson, C. T. et al. Area dynamics throughout ferroelectric switching. Science 334, 968-971 (2011).

36

Tang, Y. L. et al. Statement of a periodic community of flux closure quadrants in ferroelectric PbTiO3 movies beneath stress. Science 348, 547-551 (2015).

37

Yadav, A.Ok. et al. Statement of polar vortices in oxide super-lattices. Nature 530, 198-201 (2016).

38

Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio preliminary vitality calculations utilizing a fundamental set of aircraft waves. Phys. Rev. B 54, 11169-11186 (1996).

39

Kresse, G. & Joubert, D. Ultrasonic pseudopotentials to the projection-augmented wave methodology. Phys. Rev. B 59, 1758-1775 (1999).

40

Blöchl, P. E. Augmented wave methodology with projector. Phys. Rev. B 50, 17953-17979 (1994).

41

Monkhorst, H.J. & Pack, J.D. Explicit options for the integrations of the Brillouin zone. Phys. Rev. B 13, 5188-5192 (1976).

42

Paudel, T.R., Jaswal, S.S. & Tsymbal, E.Y. Intrinsic defects in BiFeO3 multiferroic and their impact on magnetism. Phys. Rev. B 85, ​​104409 (2012).

43

Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J. & Sutton, A.P.Electron vitality loss spectra and structural stability of nickel oxide: LSDA + U. Phys. Rev. B 57, 1505-1509 (1998).

Leave a Reply

Your email address will not be published. Required fields are marked *