Nature News

Cryo-EM construction of human smoothing linked to oxysterol coupled to a heterotrimeric GI

1.

Jiang, J. & Hui, C. C. Hedgehog reporting growth and most cancers. Dev. Cell 15, 801-812 (2008).

2

Petrov, Ok., Wierbowski, B.M. and Salic, A. Sending and receiving Hedgehog alerts. Annu. Rev. Cell Dev. Biol. 33.145-168 (2017).

Three

Arensdorf, A.M., Marada, S. & Ogden, S. Ok. Smoothed regulation: narrative of two alerts. Tendencies Pharmacol. Sci. 37, 62-72 (2016).

four

Taipale, J., Cooper, M.Ok., Maiti, T. and Beachy, P. A. Patched act catalytically to suppress Smoothened exercise. Nature 418, 892-896 (2002).

5

Qi, X., Schmiege, P., Coutavas, E., Wang, J. & Li, X. Patched human buildings and its advanced with a local palmitoyl sonic hedgehog. Nature 560, 128-132 (2018).

6

Qi, X., Schmiege, P., Coutavas, E. & Li, X. Two patched molecules have interaction distinct websites on Hedgehog, producing a reliable advanced in signaling. Science 362, eaas8843 (2018).

7.

Zhang, Y. et al. Structural foundation of Hedgehog receptor exercise analogous to that of the transport of ldl cholesterol Patched. Cell 175, 1352-1364e1314 (2018).

eight

Pak, E. & Segal, R. A. Hedgehog sign transduction: key gamers, oncogenic components and most cancers remedy. Dev. Cell 38, 333-344 (2016).

9

Dunaeva, M., Michelson, P., Kogerman, P. and Toftgard, R. Characterization of the bodily interplay of Gli proteins with SUFU proteins. J. Biol. Chem. 278, 5116-5122 (2003).

ten.

Riobo, N.A., Saucy, B., Dilizio, C. and Manning, D.R. Activation of heterotrimeric G proteins by Smoothened. Proc. Natl Acad. Sci. USA 103, 12607-12612 (2006).

11

Ogden, S.Ok. et al. G Gai protein works instantly downstream of Smoothened in Hedgehog signaling. Nature 456, 967-970 (2008).

12

Byrne, E. F. X. et al. Structural foundation of regulation smoothed by its extracellular domains. Nature 535, 517-522 (2016).

13

Huang, P. et al. Mobile ldl cholesterol straight prompts smoothed signaling within the hedgehog. Cell 166, 1176-1187 (2016).

14

Huang, P. et al. Structural foundation of activation smoothed in Hedgehog signaling. Cell 175, 295-297 (2018).

15

Wang, C. et al. Construction of the smoothed human receptor certain to an antitumor agent. Nature 497, 338-343 (2013).

16

Wang, C. et al. Structural foundation for smoothed receptor modulation and chemoresistance to anticancer medication. Nat. Frequent. 5, 4355 (2014).

17

Huang, H. C. & P., P. S. The Frizzled household: receptors for a number of sign transduction pathways. Genome Biol. 5, 234 (2004).

18

Sharpe, H.J., Wang, W., Hannoush, R.N. and Sauvage, F.J. Regulation of the oncoprotein smoothed by small molecules. Nat. Chem. Biol. 11, 246-255 (2015).

19

Raleigh, D.R. et al. Oxysterols related to eyelashes activate Smoothened. Mol. Cell 72, 316-327.e315 (2018).

20

Chen, J.Ok., Taipale, J., Cooper, M.Ok. & Beachy, P.A. Inhibition of hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 16, 2743-2748 (2002).

21

Nachtergaele, S. et al. Construction and performance of extracellular area smoothed in Hedgehog signaling in vertebrates. eLife 2, e01340 (2013).

22

Kang, Y. et al. Cryogenic construction of human rhodopsin certain to an inhibitory G protein. Nature 558, 553-558 (2018).

23

Myers, B.R. et al. Modulation of the hedgehog pathway by a number of lipid binding websites on the smoothed effector of the sign response. Dev. Cell 26, 346-357 (2013).

24

Weierstall, U. et al. The cubic part lipid injector facilitates serial femtosecond crystallography of membrane proteins. Nat. Frequent. 5, 3309 (2014).

25

Draper-Joyce, C.J. et al. Construction of human adenosine A1 receptor-Gi advanced certain to adenosine. Nature 558, 559-563 (2018).

26

García-Nafría, J., Nehmé R., Edwards, P.C. and Tate, C. G. Cryogenic construction of the serotonin 5-HT1B receptor coupled to the heterotrimer Go. Nature 558, 620-623 (2018).

27

Koehl, A. et al. Construction of the μ-opioid protein-Gi protein advanced. Nature 558, 547-552 (2018).

28

Krishna Kumar, Ok. et al. Construction of a 1-G protein advanced of cannabinoid signaling receptors. Cell 176, 448-458e412 (2019).

29

Wright, S.C. et al. A molecular change saved at school F receivers regulates receptor activation and channel choice. Nat. Frequent. 10, 667 (2019).

30

Huang, W. et al. Structural data on the activation of μ-opioid receptors. Nature 524, 315-321 (2015).

31.

Yang, S. et al. Crystalline construction of the Frizzled four receptor in a ligand-free state. Nature 560, 666-670 (2018).

32

Corcoran, R. B. and Scott, M. P. Oxysterols stimulate Sonic Hedgehog sign transduction and medulloblastoma cell proliferation. Proc. Natl Acad. Sci. USA 103, 8408-8413 (2006).

33

Chen, W. et al. Internalisation depending on the exercise of β-arrestin 2 protein and GRK2 smoothed. Science 306, 2257-260 (2004).

34

McDonald, J.G., Smith, D., Stiles, A., R. and Russell, D.W. A complete technique of extraction and quantitative evaluation of sterols and secosteroids from human plasma. J. Lipid Res. 53, 1399-1409 (2012).

35

Rasmussen, S.G. et al. Crystalline construction of the β2 receptor adrenergic receptor advanced – Gs. Nature 477, 549-555 (2011).

36

Zheng, S. Q. et al. MotionCor2: Anisotropic correction of beam-induced movement to enhance cryo-electron microscopy. Nat. Strategies 14, 331-332 (2017).

37

Rohou, A. & Grigorieff, N. CTFFIND4: Speedy and correct estimation of defocusing with assistance from digital micrographs. J. Struct. Biol. 192, 216-221 (2015).

38

Scheres, S. H. RELION: Implementation of a Bayesian strategy to the willpower of cryo-EM construction. J. Struct. Biol. 180, 519-530 (2012).

39

Grigorieff, N. Frealign: an exploratory device for cryo-EM with a single particle. Enzymol strategies. 579, 191-226 (2016).

40

Emsley, P. & Cowtan, Ok. Coot: Modeling instruments for molecular graphics. Acta Crystallogr. D 60, 2126-2132 (2004).

41

Adams, P.D. et al. PHENIX: a whole system based mostly on Python for an answer with a macromolecular construction. Acta Crystallogr. D 66, 213-221 (2010).

42

Murshudov, G.N., Vagin, A.A. and Dodson, E. J. Refinement of Macromolecular Buildings by the Most Chance Methodology. Acta Crystallogr. D 53, 240-255 (1997).

43

Brown, A. et al. Instruments for the development of macromolecular fashions and their growth in reconstructions by cryo-electron microscopy. Acta Crystallogr. D 71, 136-153 (2015).

44

Ten Eyck, L. F. Environment friendly Calculation of Construction Issue for Massive Molecules by Quick Fourier Transformation. Acta Crystallogr. A, 33, 486-492 (1977).

45

Wang, Z. et al. Atomic mannequin of bromine mosaic virus utilizing direct electron detection and optimization of actual house. Nat. Frequent. 5, 4808 (2014).

46

Heymann, J.B. & Belnap, D.M. Bsoft: Picture processing and molecular modeling for electron microscopy. J. Struct. Biol. 157, Three-18 (2007).

47

Chen, V.B. et al. MolProbity: validation of the construction any atom for macromolecular crystallography. Acta Crystallogr. D 66, 12-21 (2010).

48.

Pettersen, E.F. et al. UCSF Chimera – a visualization system for exploratory analysis and evaluation. J. Comput. Chem. 25, 1605-1612 (2004).

Leave a Reply

Your email address will not be published. Required fields are marked *