Nature News

Floor erosion occasions managed the evolution of plate tectonics on Earth


Hawkesworth, C. J. & Brown, M. Earth Dynamics and Plate Tectonic Growth. Phil Trans. R. Soc. A 376, 20180228 (2018).


Stern, R. J. The evolution of plate tectonics. Phil Trans. R. Soc. A 376, 20170406 (2018).


Herzberg, C., Condie, Ok. & Korenaga, J. Thermal historical past of the Earth and its petrological expression. Earth. Sci. Lett. 292, 79-88 (2010).


Cawood, P. A. & Hawkesworth, C. J. Imply age of the Earth. Geology 42, 503-506 (2014).


Brown, M. & Johnson, T. Secular change in metamorphism and look of world plate tectonics. A m. Mineral. 103, 181-196 (2018).


Spencer, C.J. et al. Paleoproterozoic tectono-magmatic lull as a possible set off for the supercontinent cycle. Nat. Geosci. 11, 97-101 (2018).


Ricard, Y. & Vigny, C. Coat dynamics with plate tectonics induced. J. Geophys. Res. 94, 17543-17559 (1989).


Zhong, S. & Gurnis, M. Viscous stream sample of a subduction zone with faulted lithosphere: quick and lengthy wave size topography, gravity and geoid. Geophysics Res. Lett. 19, 1891-1894 (1992).


Tackley, P. J. Self-consistent technology of tectonic plates in three-dimensional mantle convection. Earth. Sci. Lett. 157, 9-22 (1998).


Moresi, L. & Solomatov, V. Convection of the mantle with a fragile lithosphere: reflections on the worldwide tectonic model of the Earth and Venus. Geophysics J. Int. 133, 669-682 (1998).


Bercovici, D. The technology of plate tectonics from mantle convection. Earth. Sci. Lett. 205, 107-121 (2003).


O'Neill, C. et al. Episodic Precambrian Subduction. Earth. Sci. Lett. 262, 552-562 (2007).


van Hunen, J. and van den Berg, A. P. Plate tectonics on the primitive Earth: limitations imposed by the pressure and buoyancy of the subducted lithosphere. Lithos 103, 217-235 (2008).


Scholz, C. H. Earthquakes and friction legal guidelines. Nature 391, 37-42 (1998).


Byerlee, J. Rock friction. Pure Appl. Geophysics 116, 615-626 (1978).


Shreve, R.T. & Cloos, M. Dynamics of sediment subduction, mixing formation and prism accretion. J. Geophys. Res. 91, 10229-10245 (1986).


Lamb, S. & Davis, P. Cenozoic local weather change as a doable reason behind the rise of the Andes. Nature 425, 792-797 (2003).


Sobolev, S.V. & Babeyko, A.Y. What motivates the orogenesis within the Andes? Geology 33, 617-620 (2005).


Sobolev, S.V. & Muldashev, I. Modeling seismic cycles of enormous megathrust earthquakes throughout scales with a spotlight within the post-seismic part. Geochem. Geosystem Geosyst. 18, 4387-4408 (2017).


Behr, W. M. & Becker, T. W. Sediment management on subduction plate velocities. Earth. Sci. Lett. 502, 166-173 (2018).


Gurnis, M., Corridor, C. and Lavier, L. Stability of forces evolving throughout nascent subduction. Geochem. Geosystem Geosyst. 5, Q07001 (2004).


Baes, M. & Sobolev, S. V. The mantle stream as a set off for the initiation of subduction: a lacking component of the idea of the Wilson cycle. Geochem. Geosystem Geosyst. 18, 4469 to 4486 (2017).


Sizova, E. et al. Era of felsic crust within the Archean: perspective of geodynamic modeling. Precambr. Res. 271, 198-224 (2015).


Cawood, P.A. et al. Geological archive of the start of plate tectonics. Phil Trans. R. Soc. A 376, 20170405 (2018).


Bradley, D. C. Passive margins via the historical past of the Earth. Earth Sci. Rev. 91, 1-26 (2008).


Condie, Ok. C. A planet in transition: the looks of plate tectonics on Earth between three and a pair of Ga? Geosci. Entrance. 9, 51-60 (2018).


Li, Z. X. et al. To decode the rhythms of the Earth: modulation of supercontinent cycles by longer superoceanic episodes. Precambr. Res. 323, 1-5 (2019).


Dal Zilio, L. et al. The position of deep subduction in breaking of supercontinent. Tectonophysics 746, 312-324 (2018).


Shields, G. A. A Standardized Isotopic Curve of Strontium Seawater: Attainable Implications for Neoproterozoic-Cambrian Impairment Charges and Elevated Oxygenation of the Earth. eEarth 2, 35-42 (2007).


Cawood, P.A., Hawkesworth, C.J. and Dhuime, B. Continental registration and formation of the continental crust. Geol. Soc. A m. Taurus. 125, 14-32 (2013).


Spencer, C.J., Roberts, N.M.W and Santosh, M. Development, destruction and preservation of the continental crust of the Earth. Earth Sci. Rev. 172, 87-106 (2017).


Flament, N., Coltice, N. and Rey, P. F. A case of continental emergence of the late Archean from fashions of thermal evolution and hypsometry. Earth. Sci. Lett. 275, 326-336 (2008).


Korenaga, J., Planavsky, N. J. & Evans, D. A. D. International water cycle and coevolution of the inside and floor atmosphere of the Earth. Phil Trans. R. Soc. A 375, 20150393 (2017).


Bindeman, I.N. et al. Speedy emergence of subaerial land lots and starting of a contemporary hydrological cycle 2.5 billion years in the past. Nature 557, 545-548 (2018).


Hoffman, P. F. & Schrag, D. P. The speculation of the snowball Earth: testing the boundaries of world change. Terra Nova 14, 129-155 (2002).


Keller, C.B. et al. Neoproterozoic glacial origin of the nice unconformity. Proc. Natl Acad. Sci. USA 116, 1136-1145 (2019).


Bleeker, W. The final Archean disc: a puzzle in ca. 35 items. Lithos 71, 99-134 (2003).


Domeier, M. & Torsvik, T. H. Paleozoic plate tectonics. Geosci. Entrance. 5, 303-350 (2014).


Matthews, Ok.J. et al. Total and kinematic evolution of plate boundaries since late Paleozoic. International Planet. Change 146, 226-250 (2016).


Torsvik, T.H., Smethurst, M.A., Burke, Ok. & Steinberger, B. Giant igneous provinces generated from the margins of enormous low-speed provinces within the deep mantle. Geophysics J. Int. 167, 1447-1460 (2006).


Tan, E., Leng, W., Zhong, S. and Gurnis, M. Concerning the location of plumes and lateral motion of excessive modulus elastic thermochemical constructions within the 3D compressible mantle. Geochem. Geosystem Geosyst. 12, Q07005 (2011).


Steinberger, B. & Torsvik, T. H. A geodynamic mannequin of the margins plumes of the massive provinces at low shear charges. Geochem. Geosystem Geosyst. 13, Q01W09 (2012).


Dhuime, B. et al. A change within the geodynamics of continental development three billion years in the past. Science 335, 1334-1336 (2012).


Clift, P. & Vannucchi, P. Controls of tectonic enhance with respect to erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev. Geophys. 42, RG2001 (2004).


Johnson, T. E. et al. Delamination and recycling of the Archaean crust brought on by gravitational instabilities. Nat. Geosci. 7, 47-52 (2014).


Rozel, A.B. et al. Formation of continental crust on primitive Earth managed by intrusive magmatism. Nature 545, 332 to 335 (2017).


Arndt, N. & Davaille, A. Episodic Evolution of the Earth. Tectonophysics 609, 661-674 (2013).


Gerya, T.V. et al. Plate tectonics on Earth is triggered by the initiation of plume-induced subduction. Nature 527, 221-225 (2015).


O'Neill, C. et al. Subduction induced by the affect on the Hadean Earth. Nat. Geosci. 10, 793-797 (2017).


Rey, P. F., Coltice, N. and Flament, N. The unfold of the continents gave the kickoff to plate tectonics. Nature 513, 405-408 (2014).


Heuret, A., Lallemand, S., Funiciello, S., Piromallo, C. and Faccenna, C. Bodily traits of subduction-type seismogenic zones revisited. Geochem. Geosystem Geosyst. 12, Q01004 (2011).


England, P. & Wilkins, C., a easy analytical approximation of the construction of temperature in subduction zones. Geophysics J. Int. 159, 1138-1154 (2004).


Syracuse, E.M., van Keken, P.E. and Abers, G. A. Total vary of thermal fashions of subduction zones. Phys. Earth. Enter. 183, 73-90 (2010).


Nakagawa, T. and Tackley, P. J. Affect of the tectonic mode of the plates on the coupled thermochemical evolution of the mantle and the nucleus of the Earth. Geochem. Geosys Geophysics. 16, 3400-3413 (2015).


Bürgmann, R. & Dresen, G. Rheology of the decrease crust and higher mantle: knowledge from rock mechanics, geodesy and discipline observations. Annu. Rev. Planet Earth. Sci. 36, 531-567 (2008).


Popov, A. A. & Sobolev, S. V. SLIM3D: a device for three-dimensional thermomechanical modeling of the deformation of the lithosphere by elasto-visco-plastic rheology. Phys. Earth. Enter. 171: 55-75 (2008).


Steinberger, B. & Calderwood, A. Fashions of large-scale viscous flows within the Earth's mantle, topic to the constraints of mineral physics and floor observations. Geophysics J. Int. 167, 1461-1481 (2006).


Osei Tutu, A. et al. Analysis of the affect of the friction on the limits of the plate and the viscosity of the mantle on the pace of the plate. Geochem. Geosystem Geosyst. 19, 642-666 (2018).


Hirth, G. & Kohlstedt, D.L. in Contained in the Subduction Manufacturing facility (Ed Eiler, J.) 83-105 (American Geophysical Union, 2004).


Artemieva, I. International thermal mannequin TC1 for the continental lithosphere: implications for the secular evolution of the lithosphere. Tectonophysics 416, 245-227 (2006).


Parsons, B. & Sclater, J. G. An evaluation of ocean depth bathymetry variation and warmth flux with age. J. Geophys. Res. 82, 803-727 (1977).


Steinberger, B. Slabs within the decrease mantle – outcomes of dynamic modeling in comparison with tomographic pictures and the geoid. Phys. Earth. Enter. 118, 241-257 (2000).


Wu, B. et al. Reconcile a robust traction of the slab and a weak bending of the plate: the constraint of motion of the plate on the resistance of the slabs of mantle. Earth. Sci. Lett. 272, 412-421 (2008).


DeMets, C., Gordon, R.G. and Argus, D.F. Geologically Present Plate Actions. Geophysics J. Int. 181, 1-80 (2010).


Oncken, O., Boutelier, D., Dresen, G. and Schemmann, Ok. The buildup of strains controls the failure of a plate boundary zone: linking deformation of the central Andes and lithospheric mechanics . Geochem. Geosystem Geosyst. 13, Q12007 (2013).

Leave a Reply

Your email address will not be published. Required fields are marked *