Nature News

The detection of DNA harm in nucleosomes includes a change of DNA registry


Thoma, F. Repairing UV lesions in nucleosomes – intrinsic properties and transforming. DNA Restore (Amst.) Four, 855-869 (2005).


Rodriguez, Y., Hinz, J.M. and Smerdon, M.J. Entry to DNA Harm in Chromatin: Making ready the Chromatinic Panorama for Primary Excision Restore. DNA Restore (Amst.) 32, 113-119 (2015).


Hanawalt, P.C. & Spivak, G. DNA restore coupled with transcription: 20 years of progress and surprises. Nat. Rev. Mol. Cell Biol. 9, 958-970 (2008).


Okay. Luger, A. Mäder, R. Richmond, Okay. Sargent and F. T. Richmond. Crystal construction of the central nucleosome particle at a decision of two.eight Å. Nature 389, 251-260 (1997).


McGinty, R. Okay. & Tan, S. Construction and Operate of the Nucleosome. Chem. Rev. 115, 2255-2273 (2015).


Sugasawa, Okay. et al. UV-induced ubiquitylation of XPC protein mediated by the UV-DDB-ubiquitin ligase complicated. Cell 121, 387-400 (2005).


Groisman, R. et al. The exercise of ubiquitin ligase in DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA lesions. Cell 113, 357-367 (2003).


Cavadini, S. et al. Regulation of ubiquitin E3 ligase Cullin – RING by COP9 signalosome. Nature 531, 598-603 (2016).


Wang, H. et al. The ubiquitylation of H3 and H4 histones by CUL4-DDB-ROC1 ubiquitin ligase facilitates the mobile response to DNA harm. Mol. Cell 22, 383-394 (2006).


Lehmann, A. R. Ailments missing DNA restore, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochemistry 85, 1101-1111 (2003).


Luijsterburg, M. S. et al. The in vivo dynamic interplay of DDB2 E3 ubiquitin ligase with DNA broken by UV rays is impartial of the XPC harm recognition protein. J. Cell Sci. 120, 2706-2716 (2007).


Puumalainen, M.R. et al. Chromatin retention of DNA harm sensors, DDB2 and XPC, as a consequence of lack of p97 segregation, causes genotoxicity. Nat. Frequent. 5, 3695 (2014).


Fei, J. et al. Regulation of restore of nucleotide excision by UV-DDB: precedence to recognition of injury to internucleosomal DNA. PLoS Biol. 9, e1001183 (2011).


Fischer, E.S. et al. Molecular foundation of structure, concentrating on and activation of CRL4DDB2 / CSA ubiquitin ligase. Cell 147, 1024-1039 (2011).


Chu, G. and Chang, E. Xeroderma pigmentosum group E cells lack nuclear issue that binds to broken DNA. Science 242, 564-567 (1988).


Lehmann, A.R., McGibbon, D. and Stefanini, M. Xeroderma pigmentosum. Orphanet J. Uncommon Dis. 6, 70 (2011).


Scrima, A. et al. Structural foundation of UV DNA harm recognition by the DDB1 – DDB2 complicated. Cell 135, 1213-1223 (2008).


Yeh, J.I. et al. Broken DNA induced dimerization of UV-damaged DNA binding protein (UV-DDB) and its roles within the restore of chromatinized DNA. Proc. Natl Acad. Sci. USA 109, E2737 – E2746 (2012).


Li, G., M. Levitus, Bustamante, C. and Widom, J. Speedy spontaneous accessibility of nucleosomal DNA. Nat. Struct. Mol. Biol. 12, 46-53 (2005).


Zhu, F. et al. The panorama of interplay between transcription components and the nucleosome. Nature 562, 76-81 (2018).


Wittschieben, B.O., Iwai, S. & Wooden, R.D. The DDB1-DDB2 protein complicated (xeroderma pigmentosum group E) acknowledges a cyclobutane pyrimidine dimer, mismatches, apurinic / apyrimidine websites and compound lesions in DNA. J. Biol. Chem. 280, 39982-39999 (2005).


Osakabe, A. et al. Structural foundation for the popularity of pyrimidine – pyrimidone photoproducts (6-Four) by UV – DDB within the nucleosome. Sci. Rep. 5, 16330 (2015).


Lan, L. et al. Monobiquitinated histone H2A destabilizes nucleosomes containing photolesion with the concomitant launch of the UV-damaged DNA binding protein E3 ligase. J. Biol. Chem. 287, 12036-12049 (2012).


Kapetanaki, M.G. et al. DDB1-CUL4ADDB2 ubiquitin ligase is poor in group E xeroderma pigmentosum and targets histone H2A at UV-damaged DNA websites. Proc. Natl Acad. Sci. USA 103, 2588-2593 (2006).


Vasudevan, D., Chua, E. Y. D. and Davey, C. A. Crystalline buildings of central nucleosome particles containing the robust positioning sequence "601". J. Mol. Biol. 403, 1-10 (2010).


Pich, O. et al. The periodicity of somatic and germinal mutations follows the orientation of the minor groove of DNA across the nucleosomes. Cell 175, 1074-1087.e18 (2018).


Brown, A.J., Mao, P., Smerdon, M.J., Wyrick, J.J. and Roberts, S.A. The nucleosome positions set up an prolonged mutation signature in melanoma. PLoS Genet. 14, e1007823 (2018).


Mao, P., Smerdon, M.J., Roberts, S.A. and Wyrick, J.J. Chromosomal panorama of UV lesion formation and their restore on the decision of a single nucleotide. Proc. Natl Acad. Sci. USA 113, 9057-9062 (2016).


Bilokapic, S., Strauss, M. and Halic, M. Structural rearrangements of octameric translocate DNA. Nat. Frequent. 9, 1330 (2018).


Kitevski-LeBlanc, J.L. et al. Examine of the dynamics of nucleosomes destabilized by NMR of methyl-TROSY. Jam. Chem. Soc. 140, 4774-4777 (2018).


Iwai, S., Shimizu, M., Kamiya, H. & Ohtsuka, E. Synthesis of a phosphoramidite coupling unit of the photoproduct of pyrimidine (6-Four) pyrimidone and its incorporation into oligodeoxynucleotides. Jam. Chem. Soc. 118, 7642-7643 (1996).


Abdulrahman, W. et al. Set of baculovirus switch vectors for screening of affinity tags and parallel expression methods. Anal. Biochem. 385, 383-385 (2009).


Marks, B.D. et al. Multiparameter Display screen Evaluation for Progesterone Receptor Ligands: Comparability of Fluorescence Life and Fluorescence Polarization Measurements. Assay Drug Dev. Technol. three, 613-622 (2005).


Kuzmič, P. DynaFit – a software program package deal for enzymology. Enzymol strategies. 467, 247-280 (2009).


Thomä, N. & Goody, R. S. in Kinetic Evaluation of Macromolecules: A Sensible Strategy (ed., Johnson, Okay.A.) 153-170 (Oxford Univ Press, 2003).


Reardon, J. T. et al. Comparative evaluation of the binding of DNA binding protein (XPE) and the broken Escherichia coli lesion recognition protein (UvrA) in people to main ultraviolet photoproducts: T[c,s]T, T[t,s]T, T[6–4]T and T[Dewar]T. J. Biol. Chem. 268, 21301-21308 (1993).


Gaidatzis, D., Lerch, A., Hahne, F. and Stadler, M. B. QuasR: quantification and annotation of brief readings in R. Bioinformatics 31, 1130-1132 (2015).


Tang, G. et al. EMAN2: an extensible picture processing suite for electron microscopy. J. Struct. Biol. 157, 38-46 (2007).


Hohn, M. et al. SPARX, a brand new setting for cryo-EM picture processing. J. Struct. Biol. 157, 47-55 (2007).


Grant, T. & Grigorieff, N. Measurement of optimum publicity for single-particle cryo-EM with assistance from a 2.6 Å reconstruction of VP6 rotavirus. eLife Four, e06980 (2015).


Li, X. et al. Electron counting and beam-induced movement correction permit single-particle EM cryogenesis at near-atomic decision. Nat. Strategies 10, 584-590 (2013).


Zhang, Okay. Gctf: Actual-time CTF dedication and correction. J. Struct. Biol. 193, 1-12 (2016).


Scheres, S. H. RELION: Implementation of a Bayesian method to the dedication of cryo-EM construction. J. Struct. Biol. 180, 519-530 (2012).


Rosenthal, P. B. & Henderson, R. Optimum dedication of particle orientation, absolute hand loss and distinction in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721-745 (2003).


Chen, S. et al. Excessive-resolution noise substitution to measure over-adjustment and validate decision in 3D single-particle electron cryomicroscopy construction dedication. Ultramicroscopy 135, 24-35 (2013).


Adams, P.D. et al. PHENIX: a whole system based mostly on Python for an answer with a macromolecular construction. Acta Crystallogr. D 66, 213-221 (2010).


Rosa-Trevín, J.M. et al. Xmipp an improved software program suite for picture processing in electron microscopy. J. Struct. Biol. 184, 321-328 (2013).


Grant, T., Rohou, A. and Grigorieff, N. cisTEM, a user-friendly software program for processing single-particle pictures. eLife 7, e35383 (2018).


Morgan, M.T. et al. Structural foundation of histone H2B ubiquitination by the SAGA DUB module. Science 351, 725-728 (2016).


Ong, M.S., Richmond, T.J. and Davey, C.A. DNA stretching and excessive folding within the nucleus of the nucleosome. J. Mol. Biol. 368, 1067-1074 (2007).


Emsley, P. & Cowtan, Okay. Coot: Modeling instruments for molecular graphics. Acta Crystallogr. D 60, 2126-2132 (2004).


Nicholls, R. A., Lengthy, F. and Murshudov, G. N. Low decision refinement instruments in REFMAC5. Acta Crystallogr. D 68, 404-417 (2012).


Chen, V.B. et al. MolProbity: validation of the construction any atom for macromolecular crystallography. Acta Crystallogr. D 66, 12-21 (2010).


Winn, M.D. et al. Overview of the CCP4 suite and present developments. Acta Crystallogr. D 67, 235-242 (2011).


Zheng, S. Q. et al. MotionCor2: Anisotropic correction of beam-induced movement to enhance cryo-electron microscopy. Nat. Strategies 14, 331-332 (2017).


Ekundayo, B., Richmond, T.J. and Schalch, T. Capturing Structural Heterogeneity in Chromatin Fibers. J. Mol. Biol. 429,3031-3042 (2017).

Leave a Reply

Your email address will not be published. Required fields are marked *