Nature News

Specialised Coding of Sensory, Motor and Cognitive Variables in Dopamine VTA Neurons


Cohen, J. Y., Haesler, S., Vong, L., Lowell, B., B. and Uchida, N. Neuron-type-specific indicators for reward and punishment within the ventral tegmental space. Nature 482, 85-88 (2012).


Schultz, W., Dayan, P. and Montague, P. R. A neural substratum of prediction and reward. Science 275, 1593-1599 (1997).


Howe, M.W., Tierney, L., Sandberg, S.G., Phillips, P.E. and Graybiel, A.M. Extended dopamine signaling within the striatum signifies the proximity and worth of distant rewards. Nature 500, 575-579 (2013).


Howe, M. W. & Dombeck, D. A. Speedy signaling in distinct dopaminergic axons throughout locomotion and reward. Nature 535, 505-510 (2016).


Barter, J.W. et al. Past the errors of reward prediction: the position of dopamine within the motion kinematics. Entrance. Built-in. Neurosci. 9, 39 (2015).


Dodson, P.D. et al. The illustration of spontaneous motion by dopaminergic neurons is selective of the mobile sort and disturbs parkinsonism. Proc. Natl Acad. Sci. USA 113, E2180 to E2188 (2016).


da Silva, J.A., Tecuapetla, F., Paixão, V. & Costa, R.M. Dopaminergic neuronal exercise earlier than the onset of motion triggers and stimulates future actions. Nature 554, 244-248 (2018).


Coddington, L. T. and Dudman, J. T. The second of motion determines the reward prediction indicators within the dopaminergic neurons of the center mind. Nat. Neurosci. 21, 1563-1573 (2018).


Kremer, Y., Flakowski, J., Rohner, C. and Lüscher, C. VTA, externally multiplexed dopaminergic neurons with inside representations of motion directed towards an goal. Pre-print at material/10.1101/408062v1 (2018).


Howard, C.D., Li, H., Geddes, C.E. and Jin, X. Dynamic number of the motion of nigrostriatal biases to dopamine. Neuron 93, 1436-1450.e8 (2017).


Parker, N.F. et al. The reward and selection coding on the ends of the common mind dopamine neurons will depend on the striatal goal. Nat. Neurosci. 19, 845-854 (2016).


Steinberg, E.E. et al. A causal hyperlink between prediction errors, dopaminergic neurons and studying. Nat. Neurosci. 16, 966-973 (2013).


Bayer, H.M. & Glimcher, P.W. Dopaminergic neurons of the center mind code a quantitative reward prediction error sign. Neuron 47, 129-141 (2005).


Lak, A., Ok. Nomoto, M. Keramati, M. Sakagami, M. & Kepecs, A. The dopaminergic neurons of the center mind sign the assumption that the accuracy of the alternatives is correct when making a call perceptual. Curr. Biol. 27, 821-832 (2017).


Pinto, L. et al. A activity of accumulating proof utilizing visible impulses for mice navigating in digital actuality. Entrance. Neurosci conduct. 12, 36 (2018).


Barretto, R. P. J., Messerschmidt, B. and Schnitzer, M. J. In Vivo Fluorescence Imaging with Excessive Decision Microlens. Nat. Strategies 6, 511-512 (2009).


Carelli, R.M. Nucleus accumbens: mobile firing and speedy dopamine signaling in objective-directed rat behaviors. Neuropharmacology 47 (Suppl.1), 180-189 (2004).


Hamid, A.A. et al. Mesolimbic dopamine indicators the worth of labor. Nat. Neurosci. 19, 117-126 (2016).


Kim, H.F., Ghazizadeh, A. and Hikosaka, O. Dopaminergic neurons encoding the long-term reminiscence of the article's worth for recurring conduct. Cell 163, 1165-1175 (2015).


Slonim, N., Atwal, G.S., Tkacik, G. & Bialek, W .. Clustering primarily based on info. Proc. Natl Acad. Sci. USA 102, 18297-18302 (2005).


Cox, J., Pinto, L. and Dan, Y. Calcium imaging of neuronal exercise associated to sleep / awakening within the dorsal pons. Nat. Widespread. 7, 10763 (2016).


Eshel, N., Tian, ​​J., Bukwich, M. and Uchida, N. Dopaminergic neurons share a typical response perform in case of reward prediction error. Nat. Neurosci. 19, 479-486 (2016).


Joshua, M. et al. The synchronization of the dopaminergic neurons of the center mind is strengthened by enriching occasions. Neuron 62, 695-704 (2009).


Kim, Y., Wooden, J. and Moghaddam, B. The coordinated exercise of ventral tegmental neurons suits into palatable and aversive studying. PLoS ONE 7, 29766 (2012).


Pillow, J.W. et al. Spatio-temporal correlations and visible signaling in an entire neuronal inhabitants. Nature 454, 995-999 (2008).


Beier, Ok.T. et al. VTA dopaminergic neuron circuit structure revealed by systematic input-output mapping. Cell 162, 622-634 (2015).


Lammel, S. et al. Distinctive properties of mesoprefrontal neurons in a twin mesocorticolimbic dopamine system. Neuron 57, 760-773 (2008).


Tsai, H.-C. et al. Phasing in dopaminergic neurons is ample for behavioral conditioning. Science 324, 1080-1084 (2009).


Surmeier, D.J., Ding, J., Day, M., Wang, Z. and Shen, W. D1 and D2. Dopamine receptor modulation of glutamatergic striatal signaling in striatal neurons. Neurosci Traits. 30, 228-235 (2007).


Panigrahi, B. et al. Dopamine is important for the neural illustration and the management of the vigor of the motion. Cell 162, 1418-1430 (2015).


Lammel, S. et al. Range of transgenic mouse fashions for selective focusing on of mid-brain dopaminergic neurons. Neuron 85, 429-438 (2015).


Daigle, T. L. et al. A set of transgenic mouse pilot and reporter strains with improved focusing on and performance of the mind cell sort. Cell 174, 465 to 480.e22 (2018).


Dombeck, D.A., Khabbaz, A.N., Collman, F., Adelman, T.L. and Tank, D.W. Imaging of large-scale neuronal exercise with mobile decision, in awake and cellular mice. Neuron 56, 43-57 (2007).


Harvey, C.D., Coen, P. and Tank, D.W.Particular choice sequences within the parietal cortex throughout a digital navigation resolution activity. Nature 484, 62-68 (2012).


Low, R.J., Gu, Y. and Tank, D. W. Optical entry of mobile decision to mind areas in fissures: imaging of the medial prefrontal cortex and the cells of the entorhinal cortex. Proc. Natl Acad. Sci. USA 111, 18739-1874 (2014).


Aronov, D. & Tank, D. W. Dedication of neural circuits underlying 2D area navigation in a rodent digital actuality system. Neuron 84, 442-456 (2014).


Pologruto, T.A., Sabatini, B.L. and Svoboda, Ok. ScanImage: Versatile software program for the operation of laser scanning microscopes. Biomed. Eng. On-line 2, 13 (2003).


Sage, D. & Unser, M. Educating programming processing photos in Java. IEEE sign course of. Magazine. 20, 43-52 (2003).


Chen, T.-W. et al. Extremely-sensitive fluorescent protein for the imaging of neuronal exercise. Nature 499, 295-300 (2013).


Kerlin, A.M., Andermann, M.L., Berezovskii, V.Ok. & Reid, R.C. Broadly tuned response properties of varied subtypes of inhibitory neurons in mouse visible cortex. Neuron 67, 858-871 (2010).


Pinto, L. & Dan, Y. Particular cell sort exercise within the prefrontal cortex throughout goal-directed conduct. Neuron 87, 437-450 (2015).


Fürth, D. et al. An interactive framework for complete mind maps at mobile decision. Nat. Neurosci. 21, 139-149 (2018).


Runyan, C. A., E. Piasini, S. Panzeri, and S. Harvey, C. D. Separate time scales of the coding inhabitants throughout the cortex. Nature 548, 92-96 (2017).


Mereu, G. et al. Spontaneous burst exercise of dopaminergic neurons in center mind slices of immature rats: position of N-methyl-d-aspartate receptors. Neuroscience 77, 1029-1036 (1997).


Lein, E. S. et al. Genomic atlas of gene expression within the grownup mouse mind. Nature 445, 168-186 (2007).

Leave a Reply

Your email address will not be published. Required fields are marked *