Nature News

Cryo-EM constructions of the portal vertex and the packed genome of the herpes simplex virus kind 1


Bauer, D.W., Huffman, J.B., Homa, F.L. and Evilevitch, A. Herpes virus genome, the strain is energetic. Jam. Chem. Soc. 135, 11216-11221 (2013).


Zhou, Z.H. et al. See the capsid of herpesvirus at eight.5 Å. Science 288, 877-880 (2000).


Yu, X.Ok., Jih, J., Jiang, J.S. & Zhou, Z. H. Atomic construction of the capsid of the human cytomegalovirus with its pp150 safety integument layer. Science 356, eaam6892 (2017).


Heming, J.D., Huffman, J.B., Jones, L.M. and Homa, F.L. Isolation and Characterization of the Herpes Simplex Virus 1 Complicated. J. Virol. 88, 225-236 (2014).


Neuber, S. et al. Mutual interplay between human cytomegalovirus pUL51, pUL56 and pUL89 subunits promotes the formation of terminase complexes. J. Virol. 91, e02384-16 (2017).


Rao, V. B. & Feiss, M. Mechanisms of DNA packaging by massive double-stranded DNA viruses. Annu. Rev. Virol. 2, 351-378 (2015).


Tang, J. et al. DNA able to be launched into the bacteriophage ~ 29. Construction 16, 935 to 943 (2008).


Mao, H. et al. Structural and molecular foundation for coordination in a packaging engine for viral DNA. Cell Studies 14, 2017-2029 (2016).


Harjes, E. et al. Construction of the DNA clutch of the bacteriophage hage29 DNA conditioning engine. Nucleic Acids Res. 40, 9953-9963 (2012).


Jiang, W. et al. The construction of the bacteriophage epsilon15 reveals the group of the genome and a conditioning system / injection of DNA. Nature 439, 612-616 (2006).


Booy, F. P. et al. Packing of DNA encapsidated within the herpes simplex virus, much like a phage, liquid crystalline. Cell 64, 1007-1015 (1991).


Newcomb, W.W., Cockrell, S.Ok., Homa, F.L. and Brown, J.C.Polarized DNA launch of the capsid of the herpesvirus. J. Mol. Biol. 392, 885-894 (2009).


Ray, Ok., Ma, J., Oram, M., Lakowicz, JR and Black, LW Single molecule fluorescence correlation spectroscopy and FRET analyzes of phage DNA packaging: colocalization T4 phage DNA ends packed within the capsid. J. Mol. Biol. 395, 1102-1113 (2010).


Mocarski, E. S. & Roizman, B. Construction and position of herpes simplex virus DNA in inversion, circularization and technology of virion DNA. Cell 31, 89-97 (1982).


Tong, L. and Stow, N. D. Evaluation of the packaging sign mutations of herpes simplex virus kind 1 virus within the context of the viral genome. J. Virol. 84, 321-329 (2010).


Umene, Ok. Cleavage in and across the DR1 component of the herpes simplex virus kind 1 sequence A for excision of DNA fragments of size corresponding to at least one and two models of the sequence A. J. Virol. 75, 5870-5878 (2001).


McVoy, M.A., Nixon, D.E., Adler, S.P. and Mocarski, E.S. The sequences within the pac1 and pac2 motifs conserved within the herpesvirus are mandatory for the cleavage and conditioning of the murine cytomegalovirus genome. J. Virol. 72, 48-56 (1998).


Wang, J.B., Nixon, D.E. and McVoy, M.A. Definition of minimal cis-action sequences required for the maturation of the genome of the murine cytomegalovirus of the herpesvirus. J. Virol. 82, 2394-2404 (2008).


Kumar, R. & Grubmüller, H. Elastic Properties and Heterogeneous Rigidity of the Phi29 Motor Connection Channel. Biophys. J. 106, 1338-1348 (2014).


Ogasawara, M., Suzutani, T., Yoshida, I. and Azuma, M. Function of UL25 gene product within the packaging of DNA within the capsid of herpes simplex virus: product location UL25 within the capsid and demonstration of its binding to the DNA. J. Virol. 75, 1427-1436 (2001).


Huffman, J. B. et al. The C-terminus of the UL25 protein of the herpes simplex virus is required for the discharge of viral genomes from nuclear-pore-related capsids. J. Virol. 91, e00641-17 (2017).


Pasdeloup, D., Blondel D, Isidro A, and Rixon L., FJ The mix of capsid from herpesvirus to the nuclear pore advanced and the discharge of viral DNA includes the CAN / Nup214 nucleoporin and the pUL25 capsid protein. J. Virol. 83, 6610-6623 (2009).


Dai, X. & Zhou, Z. H. Construction of the capsid of herpes simplex virus 1 with related integument protein complexes. Science 360, eaao7298 (2018).


Liu, Y. T. et al. A dimer pUL25 supplies the interface between the capsid and the integument of the pseudorabies virus. J. Gen. Virol. 98, 2837-2849 (2017).


Wang, J. et al. Construction of capsid C of herpes simplex virus kind 2 with a cap-top particular part. Nat. Widespread. 9, 3668 (2018).


Lokareddy, R.Ok. et al. The Portal protein features as a DNA sensor that associates genome conditioning with maturation of the icosahedral capsid. Nat. Widespread. eight, 14310 (2017).


Yang, Ok., Wills, E. and Baines, JD The putative leucine zipper of the UL6 encoded portal protein of herpes simplex virus 1 is required for interplay with pUL15 and pUL28 and their affiliation with capsids. J. Virol. 83, 4557-4564 (2009).


Truebestein, L. and Leonard, T. A. Coiled coils: briefly. BioEssays 38, 903-916 (2016).


Rao, V. B. and Black, L. W. Packaging of DNA in bacteriophage T4 in viral genome packaging machines (Plenum, 2005).


Berndsen, Z. T., Keller, N. and Smith, D. E. Steady allosteric regulation of a viral packaging engine by a sensor that detects the density and conformation of the packaged DNA. Biophys. J. 108, 315-324 (2015).


Suloway, C. et al. Automated molecular microscopy: the brand new Leginon system. J. Struct. Biol. 151, 41-60 (2005).


Li, X.M. et al. Electron counting and beam-induced movement correction permit single-particle EM cryogenesis at near-atomic decision. Nat. Strategies 10, 584-590 (2013).


Mindell, J. A. and Grigorieff, N. Correct dedication of native defocus and tilt of the pattern in electron microscopy. J. Struct. Biol. 142, 334-347 (2003).


Ludtke, S.J., Baldwin, P.R. and Chiu, W. EMAN: Semi-automated software program for high-resolution reconstructions of a single particle. J. Struct. Biol. 128, 82-97 (1999).


Scheres, S. H. W. RELION: Implementation of a Bayesian strategy to the dedication of cryo-EM construction. J. Struct. Biol. 180, 519-530 (2012).


Scheres, S. H. W. A Bayesian view on the dedication of the cryo-EM construction. J. Mol. Biol. 415, 406-418 (2012).


Ilca, S. L. et al. Localized reconstruction of subunits from electron cryomicroscopy photos of macromolecular complexes. Nat. Widespread. 6, 8843 (2015).


DeRosier, D. J. Excessive decision information correction for the curvature of the sphere of Ewald. Ultramicroscopy 81, 83-98 (2000).


Zhang, X. & Zhou, Z. H. Limiting elements of atomic decision: cryo electron microscopy: no easy tips. J. Struct. Biol. 175, 253-263 (2011).


Rosenthal, P. B. & Henderson, R. Optimum dedication of particle orientation, absolute hand loss and distinction in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721-745 (2003).


Kucukelbir, A., Sigworth, F.J. and Tagare, H.D. Quantify the native decision of cryo-EM density maps. Nat. Strategies 11, 63-65 (2014).


Scheres, S. H. Structurally heterogeneous cryo-EM information processing in RELION. Enzymol strategies. 579, 125-157 (2016).


Pettersen, E.F. et al. UCSF Chimera – a visualization system for exploratory analysis and evaluation. J. Comput. Chem. 25, 1605-1612 (2004).


Emsley, P., Lohkamp, ​​B., Scott, W. G. and Cowtan, Ok. Traits and growth of Coot. Acta Crystallogr. D 66, 486-501 (2010).


Adams, P.D. et al. PHENIX: a whole system based mostly on Python for an answer with a macromolecular construction. Acta Crystallogr. D 66, 213-221 (2010).


Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N. and Sternberg, M.J.E. The Phyre2 internet portal for modeling, prediction, and protein evaluation. Nat. Protoc. 10, 845-858 (2015).


Trabuco, L. G., Villa, E., Ok. Mitra, J. Frank and J. Schulten, Ok. Versatile Adaptation of Atomic Buildings to Electron Microscopy Maps Utilizing Molecular Dynamics. Construction 16, 673-683 (2008).

Leave a Reply

Your email address will not be published. Required fields are marked *