Nature News

Mesh anchoring stabilizes solution-treated semiconductors

1.

Beal, R.E. et al. Perovskites to the cesium lead halide with improved stability for tandem photo voltaic cells. J. Phys. Chem. Lett. 7, 746-751 (2016).

2

Wang, Q. et al. Stabilization of the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin coating movies. Joule 1, 371-382 (2017).

three

Liu, M. et al. Natural-inorganic hybrid inks flatten the power panorama in colloidal quantum dot solids. Nat. Mater. 16, 258-263 (2017).

four

Zhou, J., Liu, Y., Tang, J. and Tang, W. Engineering of semiconductor quantum dot floor ligands for chemosensory and organic functions. Mater. At this time 20, 360-376 (2017).

5

Keitel, R.C., Weidman, M.C. and Tisdale, W.A. Close to infrared photoluminescence and thermal stability of PbS nanocrystals at elevated temperatures. J. Phys. Chem. C 120, 20341-20349 (2016).

6

Mitzi, D. B. Inorganic semiconductors handled in resolution. J. Mater. Chem. 14, 2355-2365 (2004).

7.

García de Arquer, F.P., Armin, A., Meredith, P. & Sargent, E. H. Answer-treated semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100 (2017), corrigendum 2, 17012 (2017).

eight

Tan, Z.-Ok. et al. Vibrant electroluminescent diodes based mostly on perovskite to the organometallic halide. Nat. Nanotechnol. 9, 687-692 (2014).

9

Shirasaki, Y., Supran, G.J., Bawendi, M.G. & Bulović, V. Emergence of colloidal quantum dot mild emitting applied sciences. Nat. Photon. 7, 13-23 (2013).

ten.

Xu, J. et al. 2D matrix engineering for the homogeneous coupling of quantum dots in photovoltaic solids. Nat. Nanotechnol. 13, 456-462 (2018).

11

Chuang, C.-H. M., Brown, P. R., Bulović, V. and Bawendi, M. G. Enhancing the efficiency and stability of quantum dot photo voltaic cells by the engineering of band alignment. Nat. Mater. 13, 796-801 (2014).

12

Christians, J. A. et al. Customized interfaces of unencapsulated perovskite photo voltaic cells for operational stability> 1000 hours. Nat. Vitality three, 68-74 (2018).

13

Katan, C., Mohite, A.D. and Even, J. Entropy in halide perovskites. Nat. Mater. 17, 377-379 (2018).

14

Yang, W. S. et al. Excessive efficiency photovoltaic perovskite layers manufactured by intramolecular trade. Science 348, 1234-1237 (2015).

15

Nationwide Laboratory of Renewable Vitality. Photovoltaic Analysis http://www.nrel.gov/ncpv/photographs/efficiency_chart.jpg.

16

Ju, M.-G. et al. In direction of ecological and steady perovskite supplies for photovoltaics. Joule 2, 1231-1241 (2018).

17

Spur, G. E. & Ginger, D. S. Change of site-B steel cations in halide perovskites. ACS Vitality Lett. 2, 1190-1196 (2017).

18

Li, B. et al. Floor passivation engineering technique in cubic perovskites CsPbI3 totally inorganic for top efficiency photo voltaic cells. Nat. Frequent. 9, 1076 (2018).

19

Jeong, B. et al. Perovskite in CsPbI3 totally inorganic part stabilized by poly (ethylene oxide) for purple mild emitting diodes. Adv. Funct. Mater. 28, 1706401 (2018).

20

Xiang, S. et al. Synergistic impact of non – stoichiometry and Sb doping on steady α – CsPbI3 within the air for environment friendly carbon – based mostly perovskite photo voltaic cells. Nanoscale 10, 9996-10004 (2018).

21

Yang, D., Li, X. and Zeng, H. Floor chemistry of all inorganic halide perovskite nanocrystals: passivation mechanism and stability. Adv. Mater. Interfaces 5, 1701662 (2018).

22

Ihly, R., Tolentino, J., Liu, Y., Gibbs, M. and Legislation, M. The photothermal stability of quantum dot solids PbS. ACS Nano 5, 8175-8186 (2011).

23

Zhang, X. et al. CsPbI3 inorganic perovskite coating on a PbS quantum dot for extremely environment friendly and steady infrared photo voltaic cells. Adv. Vitality Mater. eight, 1702049 (2018).

24

Ning, Z. et al. Solids with quantum dots within the perovskite. Nature 523, 324-328 (2015).

25

Zhao, D., Huang, J., Qin, R., Yang, G. and Yu, J. Perovskite hybrid seen within the close to infrared: PbS quantum dot photodetectors made utilizing a course of additive antisolvent resolution. Adv. Choose. Mater. 6, 1800979 (2018).

26

Yang, Z. et al. Photovoltaic techniques with colloidal quantum dots enhanced by perovskite bombardment. Nano Lett. 15, 7539-7543 (2015).

27

Dalven, R. Digital construction of PbS, PbSe and PbTe. Stable State Phys. 28, 179-224 (1974).

28

Pinardi, Ok. et al. Important thickness and stress rest in unmatched II – VI semiconductor layers on the community brand CNRS brand INIST Accueil / Residence Imprimer / Print Contact / Contact Bookmark and Share Mendeley. J. Appl. Phys. 83, 4724-4733 (1998).

29

Folks, R. & Bean, J.C. Calculation of important layer thickness versus lattice mismatch for GexSi1 – x / Si constrained layer heterostructures. Appl. Phys. Lett. 47, 322-324 (1985).

30

Scott, G. D. and Kilgour, D. M. The density of random random compression of spheres. J. Phys. D 2, 863-866 (1969).

31.

Ning, Z. et al. Solids of n – sort colloidal quantum dots steady within the air. Nat. Mater. 13, 822-828 (2014).

32

de Mello, J. C., H. F. Wittmann and R. H. Ami. An improved experimental willpower of quantum effectivity in exterior photoluminescence. Adv. Mater. 9, 230-232 (1997).

33

Proppe, A.H. et al. Picosecond cost switch and lengthy provider diffusion lengths in colloidal quantum dot solids. Nano Lett. 18, 7052-7059 (2018).

34

Gilmore, R.H., Lee, E.M., Weidman, M.C., Willard, A.P. and Tisdale, W. A. ​​Dynamics of provider hopping in homogeneously expanded PbS quantum dot solids. Nano Lett. 17, 893-901 (2017).

35

Zhitomirsky, D., Voznyy, O., Hoogland, S. & Sargent, E. H. Measurement of cost provider diffusion in colloidal quantum dot solids coupled. ACS Nano 7, 5282-5290 (2013).

Leave a Reply

Your email address will not be published. Required fields are marked *